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Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniatur-
ization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the
propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within
the discharge channel while the others use permanent magnets, promising power reduction relative to the elec-
tromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by
keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset
spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster effi-
ciencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally
higher for the permanent magnet thruster with the magnetic screen, while That thruster’s specific impulse as
a function of discharge voltage is comparable to the electromagnet thruster.

I. Introduction

W

HILE annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that
operates over a broad envelope from ∼ 1 kW down to ∼ 100 W while maintaining an efficiency of 45-55%. Scal-

ing to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel
size and an increase in the magnetic field strength. 1,2 Increasing the magnetic field becomes technically challenging
since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic
circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece
defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster,
with the temperature eventually exceeding the Curie temperature of the material 2 and in extreme circumstances leading
to accelerated erosion of the channel wall.

An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. 3 Laboratory model CHTs have
operated at power levels ranging from —50 W up to —1 kW. These thrusters exhibit performance characteristics that
are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the
CHT’s insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for
reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel
heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential
for high performance in the low-power regime has served as the impetus for research and development efforts aimed
at understanding and improving CHT performance. 3–7

In this paper, we present performance measurements from three separate variations on the CHT. Each variation is
different in the manner in which the magnetic field is applied to the discharge channel. The use of electromagnets in
one thruster offers the capability to test over a wide range of magnetic field strengths. The thrusters fabricated with
permanent magnets do not offer this flexibility, but they do have the promise of reduced overall power consumption
relative to the electromagnet variant. The use of permanent magnets simplifies the design by removing the multi-turn
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electromagnet coils from the thruster. Thruster performance measurements (thrust, I sp, and anode efficiency) and the
discharge current as a function of voltage are presented to compare the performance of the different thrusters.

II. Experimental Apparatus

All cylindrical Hall thruster testing presented in this paper was conducted at NASA’s Marshall Space Flight Center
(MSFC). We proceed first with a description of the three different thrusters and then discuss the facilities at MSFC.

A. CHT with Electromagnet Coils

Performance measurements obtained for the 3-cm electromagnet CHT (CHTem) shown in Fig. 1 were previously
reported in Ref. [6]. The thruster consists of a boron-nitride ceramic channel, an annular anode, two electromagnet
coils, and a magnetic core. The thruster channel is a composite of a shorter, annular region and a longer, cylindrical
region. Gas is injected through the anode into the short, annular region of the thruster. The length of the annular region
is sized to be greater than the ionization mean free path for xenon. This allows for high ionization of the propellant at
the boundary between the annular and cylindrical regions. The electromagnet coils are operated using independently
controlled power supplies, and the resulting field topology has a mirror-like structure near the thruster axis.

Figure 1. A) Schematic illustration and B) photograph of the 3-cm electromagnet cylindrical Hall thruster.

B. CHT with Permanent Magnets

Various measurements on the 2.6-cm channel diameter permanent magnet CHT (CHTpm-1) shown in Fig. 2a were
previously reported in Refs. [8, 9]. The thruster is roughly 5.5 cm in overall diameter and 3.5 cm long, massing
roughly 350 g. The thruster channel is comprised of a ceramic boron-nitride insulator with propellant fed from an
annular anode. Unlike the CHTem, this thruster is purely cylindrical, possessing no shorter, annular region. Two sets
of samarium-cobalt (Sm-Co) rare-Earth magnets are used to produce the magnetic field. The magnets are oriented in
the same direction to produce the ‘direct’ magnetic field topology shown in Fig. 2b and the maximum field strength
inside the thruster channel is roughly 1 kG. The cathode is oriented such that the orifice is 1.9 cm (0.75”) downstream
of the thruster exit and 5.1 cm (2”) from the thruster centerline. The cathode is aligned such that its centerline forms a
40o angle with the thruster centerline.

C. CHT with Permanent Magnets and a Magnetic Screen

Recent measurements were obtained on the 2.6-cm channel diameter permanent magnet CHT (CHTpm-2) shown in
Fig. 3. This is the same thruster that described in the previous section, except it additionally possesses an external
magnetic screen to keep the magnetic field from expanding into space downstream of the thruster. The thruster is
operated with the cathode in one of two positions, with the orifice radially offset 1.47 cm in the minimum radial
position and 2.35 cm in the ‘zero’ position. In both cases, the cathode is oriented perpendicular to the thruster axis and
the orifice is located roughly 2 cm downstream of the thruster exit plane.

2of7

American Institute of Aeronautics and Astronautics



a)

b)

a)

1.47

b)

2.35

Figure 2. a) Laboratory model 2.6-cm CHT with Sm-Co permanent magnets (with US quarter for scale). b) Magnetic field topology in a
laboratory model 2.6 cm CHT with Sm-Co permanent magnets where the magnets are oriented in a direct-field alignment. The maximum
magnetic field is roughly 1 kG at the axis near the back wall.

Figure 3. Laboratory model 2.6-cm CHT with Sm-Co permanent magnets and a magnetic screen outer shell with the cathode a) in the
minimum radial position and b) in the ‘zero’ position. c) Magnetic field map of the thruster.

D. NASA-MSFC Test Facility

In all three cases a commercial HeatWave Labs HWPES-250 hollow cathode is used, serving as both the thruster
cathode and the beam neutralizer. The working propellant for all experiments is research-grade xenon gas, and the
cathode and anode flow rates are independently controlled. The propellant flow rate to both the cathode and anode
were controlled using two variable 10-sccm MKS 1479 precision flow controllers (calibrated on Xe and controllable
to f0.1 sccm). All testing was performed with a cathode flow rate of 2 sccm. Power was provided to the thruster and
cathode using Sorenson switching power supplies.

Testing was conducted in a 2.75-m diameter, 7.6-m long stainless steel vacuum chamber. The vacuum level inside
the chamber is maintained by two 9500l/s gaseous helium cryopumps. The base pressure of the facility was 2 × 10 —7

torr, and the pressure level (corrected for Xe) during testing was roughly 1-2 × 10 —5 torr.
Thrust was measured using the variable-amplitude hanging pendulum with extended range (VAHPER) thrust

stand. 10 The stand employs a unique linkage mechanism to convert horizontal deflection of the pendulum arm into
amplified vertical deflection of a secondary beam. Displacement (thrust) calibration of the VAHPER thrust stand is
accomplished using an in situ calibration rig that applies a series of known loads normal to the pendulum arm. Cal-
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ibration can be performed before, during, and after thruster operation. The measured displacement of the vertically
deflecting linkage is recorded as the calibration loads are applied to the arm. Assuming that the relationship between
the applied force and the measured displacement is linear allows for a linear curve fit of the calibration data.

It should be noted that there are still some issues that remain to be explored, especially with CHTpm-2. The most
important is the fact that, for a given discharge current, the thruster draws more current in the MSFC setup than in the
test setup at the Princeton Plasma Physics Laboratory (PPPL). It is unclear at this time how important this effect is
with respect to the integrity of the measured data. It also needs to be explored in terms of whether the source of this
discrepancy resides in the test setup (cathode mount position, etc.) or is a facility effect.

III. Experimental Data

Thrust, thruster efficiency, and specific impulse (Isp) measurements for all the thrusters described in the previous
section are presented in Fig. 4. The thrust and specific impulse measurements are given according to their standard
definitions. 11 To account for the added power required by the CHTem relative to the CHTpm models, the thruster
efficiency is calculated as the ratio of the exhaust jet power to the sum of the discharge power and the electromagnet
power. For the CHTem, the power applied to the electromagnet coils is roughly 100 W. CHTpm-1 and -2 are not
penalized by this additional power loss because they do not have electromagnet coils. The data for CHTem and
CHTpm-1 are displayed in Figs. 4a-c, while the data for CHTpm-2 operating with the cathode exit located at the
minimum radius and ‘zero’ positions are shown in Figs. 4d-f.
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Figure 4. Thrust, thruster efficiency (including electromagnet power consumption for CHTem), and IsP as a function of discharge power
for a)-c) the CHTem and CHTpm-1 and d)-f) the CHTpm-2 for both cathode positions (minimum radius and ‘zero’). The average error
bars (with a 95% confidence interval) on these data are roughly 150 µN,1.1%, and 40-50 sec.
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The data span the range from 50-350W in discharge power, resulting in thrust levels between 1.3 and 7.3 mN,
thruster efficiencies between 3.5 and 28.7%, and Isp levels between 400 and 1940 sec. Thrust and specific impulse
increase with discharge power in all cases. Thruster efficiency increases with discharge power below 200 W, but in the
instances where data are available the efficiency starts to asymptote or even decrease above 200 W.

The performance data show that the CHTpm-2 with the magnetic screen installed generally has greater efficiency
for both cathode positions. Below 150 W with the cathode at the minimum radius position the efficiency at a given
discharge power level is roughly the same for all three flow rates tested. Just as interesting is that the efficiency at
the low power level of 50 W and a flow rate of 3.0 sccm is 9.9% While the CHTem has lower efficiency relative to
CHTpm-2, it should be noted that the thrust and Isp of the former are higher and it is only the electromagnet power that
reduces the efficiency of the CHTem to the level reported here. At low discharge power levels, there is a higher degree
of variability and spread in the specific impulse and efficiency of CHTpm-1 relative to the other data sets. During
testing the operation of CHTpm-1 at lower discharge power levels was much more sensitive to very small changes in
the discharge parameters relative to the other thrusters, producing the inconsistent or scattered results observed in the
data set.
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Figure 5. Discharge current as a function of discharge voltage and anode flow rate for a) CHTem, b) CHTpm-1, c) CHTpm-2 (minimum
radius cathode position), and d) CHTpm-2 (‘zero’ cathode position).

The discharge current as a function of voltage for all thruster configurations is presented in Fig. 5. For a given
thruster, we observe that in all cases the current is greater at higher flow rates. While only a small span of discharge
voltages was tested using the CHTem, the data over this span exhibit a relatively constant discharge current. Except
for the lowest flow rate, the discharge current for CHTpm-1 exhibits a local minimum between 250 and 300 V. While
the current levels for CHTem and CHTpm-1 are somewhat comparable, the currents drawn by CHTpm-2 represent
a significant increase. Functionally, both CHTpm-2 data sets follow the same basic form, exhibiting a local maxima
at lower voltages. While the discharge in the CHTpm-2 extinguished above 350 V in the ‘zero’ configuration, the
other cathode position did permit operation at higher voltages and resulted in the appearance of local minima in the
discharge current.

The Isp as a function of discharge voltage is given in Fig. 6 for all thruster configurations. In all cases, I sp increases
with discharge voltage. In most cases, Isp is higher at higher flow rates. However, for CHTpm-2 with the cathode
in the ‘zero’ position, the lowest specific impulse at a given discharge voltage occurs at 3.5 sccm, with higher I sp at
both 3.0 and 4.0 sccm. From 250-350 V, the specific impulse of CHTem and CHTpm-2 are comparable in magnitude.
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Figure 6. IeP as a function of discharge voltage for a) the CHTem and CHTpm-1, b) the CHTpm-2 for both cathode positions (minimum
radius and ‘zero’).

The effect of the magnetic screen on the permanent magnet thruster performance is clearly seen in the upwards shift
in specific impulse for CHTpm-2 relative to CHTpm-1 at a given discharge voltage.

For those cases where at a given voltage Isp is greater for a given mass flow rate, we can speculate that this increase
is due to greater propellant use (i.e., low neutral fraction), the formation of doubly ionized Xe, or a combination of the
two. However, we do not have enough information at this time to reach a definite conclusion.

IV. Conclusions

Although conventional (annular) Hall thrusters are efficient in the kilowatt power regime, they become inefficient
when scaled to small sizes. This is due to the difficulties associated with holding the performance scaling parameters
constant while decreasing the channel size and increasing the applied magnetic field strength. The cylindrical Hall
thruster can be more readily scaled to smaller sizes due to its nonconventional discharge-chamber geometry and
associated magnetic field profile.

In the present paper, a series of measurements obtained on three separate cylindrical Hall thrusters were compared.
One thruster employed an electromagnet coil to generate the magnetic field in the thruster while the other two used
permanent magnets. The use of permanent magnets promises lower thruster power consumption by eliminating the
electromagnet power sink. In addition, permanent magnets simplify the design, removing the need for additional
power supplies and multi-turn electromagnet coils.

Performance measurements for all thrusters were obtained using the VAHPER thrust stand. The combined data
span the range of discharge power from 50-350 W. The thruster produced thrust levels ranging from 1.3-7.3 mN,
thruster efficiencies spanning 3.5-28.7%, and Isp between 400-1940 sec. All performance parameters generally in-
creased with discharge power, except in testing of the CHTpm-1 above 250 W. For that thruster above 250 W, the
thruster efficiency was reduced with increasing discharge power. The performance data show a generally higher ef-
ficiency for CHTpm-2 for both cathode positions, with the capability to operate at lower power levels. The I sp as a
function of discharge voltage was comparable between CHTem and CHTpm-2, while the specific impulse on CHTpm-
1 was lower, indicating the positive effect of the magnetic screen on the performance of the permanent magnet thruster.
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